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ABSTRACT. We prove that every projective rational surface of type(n, m) has only a
finite number of(−1)-curves and only a finite number of(−2)-curves, wheren andm
are nonnegative integers satisfying the inequalitymn−m− 4n < 0. As a consequence
of this result, it follows the finite generation of the monoid of effective divisor classes on
such surface. Thus giving in particular, a uniform proof of the classical results stating that
the monoid of effective divisor classes on the surface obtained by blowing up the projective
plane at points which are either all collinear or which are all on a conic is finitely generated.

1. Introduction

The monoid of effective divisor classesM(X) on a given smooth projective rational
surfaceX defined over an algebraically closed field of arbitrary characteristic may fail to
be finitely generated. This is mainly due to the existence of an infinite number of integral
curves of strictly negative self-intersection. A classical example of this phenomenon is the
one given by Masayoshi Nagata (see [13, Theorem 4a, page 283]). Indeed, he shows that
the surface obtained by blowing up nine points in general position has an infinite number
of (−1)-curves, see also [5, Exercise 4.15, page 409]. Here, a(−1)-curve on a smooth pro-
jective surfaceY means that it is a smooth rational curve with self-intersection−1. It may
happen also that there exists a surface with an infinite number of(−2)-curves, this phe-
nomenon is illustrated by an example of Brian Harbourne in [2, Example (2.8), page 140],
see also [10, Example 5.5, page 111] for some open questions. By a(−2)-curve, we mean
a smooth rational curve of self-intersection−2. On the other hand, the monoid of effective
divisor classes on a smooth projective rational surface having an effective anticanonical
divisor is finitely generated if and only ifX has only a finite number of(−1)-curves and
only a finite number of(−2)-curves, see [10, Corollary 4.2, page 109]. In this note, we
give classes of smooth projective rational surfacesX such thatM(X) is finitely generated.
These rational surfaces, denoted byS(n,m) and called of type(n, m) wheren andm are
nonnegative integers, are constructed as follows. Take a degenerate cubic which consists
of a lineL on the projective plane and a plane (integral) conicC (for example,L andC
can be chosen in such a way that they meet each other transversally). Then taken points,
sayP1, ..., Pn, onL andm points, sayQ1, ..., Qm, onC with the assumption that the set
of these(n + m) points should not contain the intersection set of the lineL and the conic
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C. S(n,m) is then nothing but the surface obtained by blowing-up the projective planeP2

with center the zero dimensional closed subscheme{P1, ..., Pn, Q1, ..., Qm}. Classical
examples of this kind of surfaces is the ones when eitherm or n vanishes. Forn and
m big enough, the complete linear anticanonical system ofS(n,m) is reduced to a single-
ton consisting of a reduced effective divisor having two smooth rational curves of strictly
negative self-intersection as irreducible components. In particular, it may happen that a
component maybe a(−1)-curve, or a(−2)-curve. Recall that a(−1)-curve (respectively
a (−2)-curve) is a smooth rational curve of self-intersection−1 (respectively−2).

The main result of this work is the following:

Theorem 1. With the notation as above,S(n,m) has only a finite number of(−1)-curves
and a finite number of(−2)-curves, wheren andm are nonnegative integers satisfying the
following inequality: mn−m− 4n < 0.

As a corollary, we have:

Corollary 2. The monoid of effective divisor classes onS(n,m) is finitely generated by
the set of(−1)-curves, by the set of(−2)-curves and eventually by the two irreducible
components of the anticanonical divisor ofS(n,m), wheren andm are nonnegative integers
satisfying the two inequalitiesmn−m− 4n < 0 andn + m ≥ 2.

Proof. It is a straightforward application of the above Theorem 1 and the Corollary [10,
Corollary 4.2, page 109]. �

Hence, it follows by applying the Corollary 2.

Corollary 3. The monoid of effective divisor classes onS(n,m) is finitely generated by the
smooth rational curves of strictly negative self-intersection, wheren andm are nonnega-
tive integers satisfying the two inequalitiesmn−m− 4n < 0 andn + m ≥ 2.

The following classical result then follows easily:

Corollary 4. The monoid of effective divisor classes on the surface obtained by the blow
up the projective plane either at collinear points or at points all on a conic is finitely
generated.

Proof. Apply the above Corollary 2 to eitherS(n,0) or S(0,m), wheren andm are positive
integers which can be chosen larger than or equal to two, otherwise (i.e., if eithern or m
equals one), the conclusion of the Corollary 4 is trivial. �

Whereas the following nonclassical result follows also easily:

Corollary 5. The monoid of effective divisor classes on the surface obtained by the blow
up the projective plane at a set consisting of four or fewer points in general position and of
n general points of a line is finitely generated, where the integern is larger than or equal
to ten.

Proof. It is a straightforward from the Corollary 2 and the fact that there exists at least
one integral conic passing through any four or fewer assigned points in general position,
see the Proposition [5, Proposition 4.1, page 396] and its Corollary [5, Corollary 4.2, page
397]. �
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Remark 6. Our choice of the number ten in the Corollary 5 comes from our interest to
find new smooth projective rational surfacesX having a canonical divisorKX of strictly
negative self-intersection and for which the monoid of effective divisor classesM(X) is
finitely generated. SurfacesX with K2

X ≥ 0 are very well understood by now, see[13],
[14], [11], [2], [12], [3], [4], [6], [8], [7] and[9].

The proof of the theorem 1 will be postponed until section three. The structure of the
paper is the following: section two gives the background needed and section three gives
the proof of the result stated in section one.

2. Preliminaries

Let X be a smooth projective rational surface defined over an algebraically closed field
of arbitrary characteristic. A canonical divisor onX, respectively the Picard group ofX,
will be denoted byKX and respectively byPic(X) (see [5, Example 1.4, page 361] and
[5, line -6, page 357]. There is an intersection form onPic(X) induced by the intersection
of divisors onX, it will be denoted by a dot, that is, forx andy in Pic(X), x.y is the
intersection number ofx andy (see [5, Theorem 1.1, page 357]).

The following result known as the Riemann-Roch theorem for smooth projective ratio-
nal surfaces is stated using the Serre duality.

Theorem 7. Let D be a divisor on a smooth projective rational surfaceX having an
algebraically closed field of arbitrary characteristic as a ground field. Then the following
equality holds:

h0(X, OX(D))− h1(X, OX(D)) + h0(X, OX(KX −D)) = 1 +
1
2
(D2 −D.KX).

OX(D) being an invertible sheaf associated to the divisorD andKX being a canonical
divisor onX.

Proof. This is exactly the Theorem [5, Theorem 1.6, page 362] applied to the case when
the surface is rational. �

Here we recall some standard results, see [4], [5] and [1]. We begin with the notion of
nefness of divisors.

Definition 1. A divisorD on a smooth projective surfaceZ is numerically effective, nef in
short, ifD.C ≥ 0 for every integral curveC onZ.

A typical example is given by the following lemma:

Lemma 8. An integral curve on a smooth projective surface having a nonnegative self-
intersection is nef.

Definition 2. A divisor classx modulo algebraic equivalence on a smooth projective sur-
faceZ is effective respectively numerically effective, nef in short, if an element ofx is an
effective, respectively numerically effective, divisor onZ.

Now, we start with some properties which follow from a successive iterations of blowing
up closed points of a smooth projective rational surface.
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Lemma 9. Let π? : Pic(X) → Pic(Y ) be the natural group homomorphism on Picard
groups induced by a given birational morphismπ : Y → X of smooth projective rational
surfaces. Thenπ? is an injective intersection-form preserving map of free abelian groups
of finite rank. Furthermore, it preserves the dimensions of cohomology groups, the effective
divisor classes and the numerically effective divisor classes.

Proof. See [4, Lemma II.1, page 1193]. �

Lemma 10. Let x be an element of the Picard groupPic(X) of a smooth projective
rational surfaceX. The effectiveness or the the nefness ofx implies the noneffectiveness
of kX − x, wherekX denotes the element ofPic(X) which contains a canonical divisor
onX. Moreover, the nefness ofx implies also that the self-intersection ofx is greater than
or equal to zero.

Proof. See [4, Lemma II.2, page 1193]. �

The following result is well known as the adjunction formula:

Lemma 11. LetΓ be an integral curve on a smooth projective surfaceZ, then the following
equality holds

Γ2 + Γ.KZ = 2pa(Γ)− 2,

whereKZ is a canonical divisor onZ andpa(Γ) is the arithmetic genus of the curveΓ.

Proof. See [5, Proposition 1.5, page 361]. �

Using B́ezout theorem, one may determine the elements of the anticanonical complete
linear system ofS(n,m) for n ≥ 4 andm ≥ 5.

Lemma 12. For n ≥ 4 andm ≥ 5, the anticanonical complete linear system| −KS(n,m) |
onS(n,m) is

| −KS(n,m) | = {C̃ + L̃},
whereC̃ (respectively,̃L) is the strict inverse transform of the conicC (respectively, of the
line L) by the natural projection fromS(n,m) to the projective plane.

From [5, Proposition 3.3, page 387] and the knowledge of a canonical divisor on the
projective plane, one may obtain:

Lemma 13. The self-intersection of a canonical divisor onS(n,m) is equal to9−(n+m)2,
wheren andm are arbitrary nonnegative integers.

Remark 14. The surface in the Corollary 5 has a canonical divisor of self-intersection
less than or equal to−1.

3. Proof of the theorem 1

In this section, we give a proof of the result stated in the theorem of section one. To do
so, we need to give explicitly the lattice structure ofPic(S(n,m)).
Firstly, the integral basis

(E0;−EL
1 , . . . ,−EL

n ;−EC
1 , . . . ,−EC

m),

is defined by:
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• E0 is the class of a line on the projective plane which do not pass through any of
the assigned pointsP1, ..., Pn, Q1, ..., Qm in consideration,

• EL
i is the class of the exceptional divisor corresponding to theith point blown-up

Pi for everyi = 1, . . . , n,
• EC

j is the class of the exceptional divisor corresponding to thejth point blown-up
Qj for everyj = 1, . . . ,m.

The class of a divisor onS(n,m) will be represented by the(1 + m + n)-tuple

(a; bL
1 , . . . , bL

n ; bC
1 , . . . , bC

m),

Secondly, the intersection form onPic(S(n,m)) is given by:

• E2
0 = 1 = −(EL

i )2 = −(EC
j )2 for everyi = 1, . . . , n andj = 1, ...,m;

• EL
i .EL

i′ = 0 for everyi, i′ = 1, . . . , n, with i 6= i′;
• EC

j .EC
j′ = 0 for everyj, j′ = 1, . . . ,m, with j 6= j′;

• EL
i .EC

j = 0 for everyi = 1, ..., n, j = 1, . . . ,m;
• E0.EL

i = E0.EC
i = 0 for everyi = 1, ..., n, j = 1, . . . ,m.

Remark 15. we observe that if the class(a; bL
1 , ..., bL

n ; bC
1 , ..., bC

m) is effective, then it rep-
resents the class of a projective plane curve of degreea and having at least multiplic-
ity bL

1 , ..., bL
n (respectively,bC

1 , ..., bC
m) at the pointsP1, ..., Pn (respectively at the points

Q1, ..., Qm). Also we note by assumption that the classesE0, EL
i , EC

j are all the classes of
smooth rational curves onS(n,m).

We will prove that the set of(−1)-curves and the set of(−2)-curves are both fi-
nite. To do so, we first show that the set of(−2)-curves is finite. So letV be a gen-
eral (−2)-curve onS(n,m). Let π be the natural projection fromS(n,m) to P2 and let
(a; bL

1 , ..., bL
n ; bC

1 , ..., bC
m) be the(1+n+m)-tuple representing the class ofV in the Picard

groupPic(S(n,m)) relatively to the integral basis(E0;−EL
1 , . . . ,−EL

n ;−EC
1 , . . . ,−EC

m).
SinceV 2 = −2, it follows that the degreea ≥ 1. From the two equalitiesV 2 = −2 and
V.KS(n,m) = 0, one may obtain the following equalities:

(1) (bL
1 )2 + . . . + (bL

n)2 + (bC
1 )2 + · · ·+ (bC

m)2 = a2 + 2,

and

(2) bL
1 + · · ·+ bL

n + bC
1 + · · ·+ bC

m = 3a.

It follows that if eitherm or n vanishes, thena also vanishes. Hence there is at most
one(−2)-curve, generically there is no(−2)-curve at all. Consequently, we assume that
m andn do not vanish. From the equality (2), one may obtain the following two equalities:

(3) bL
1 + · · ·+ bL

n = a,

and

(4) bC
1 + · · ·+ bC

m = 2a.
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We claim that the integera is bounded. To see this, we argue as follows. DefinexL
i and

yC
j for everyi = 1, . . . , n and for everyj = 1, . . . ,m as follows.

(5) xL
i =

(
bL
i − a

n

)
,

and

(6) yC
j =

(
bC
j − 2a

m

)
.

Then the equations (3) and (4) become respectively:

(7) xL
1 + · · ·+ xL

n = 0,

(8) yC
1 + · · ·+ yC

n = 0.

Whereas the equation (1) gives the following equation:

(9) (xL
1 )2 + . . . + (xL

n)2 + (yC
1 )2 + · · ·+ (yC

m)2 = 2 + a2 − a2

n
− 4a2

m
,

which implies by our assumption that the nonnegative integera is bounded.

Now we proceed to prove that the set of(−1)-curves onS(n,m) is finite. Indeed, letU
be a general(−1)-curve onS(n,m) and let(a; bL

1 , ..., bL
n ; bC

1 , ..., bC
m) be the(1 + n + m)-

tuple representing the class ofU in the Picard groupPic(S(n,m)) relatively to the integral
basis(E0;−EL

1 , . . . ,−EL
n ;−EC

1 , . . . ,−EC
m). SinceU is general, it follows that the degree

a ≥ 1. From the two equalitiesU2 = −1 andU.KS(n,m) = −1, one may obtain the
following two equalities:

(10) (bL
1 )2 + . . . + (bL

n)2 + (bC
1 )2 + · · ·+ (bC

m)2 = a2 + 1,

(11) (a− bL
1 − · · · − bL

n) + (2a− bC
1 − · · · − bC

m) = 1,

Hence either the following case to whom we refer to as the case1,

(12) (bL
1 )2 + . . . + (bL

n)2 + (bC
1 )2 + · · ·+ (bC

m)2 = a2 + 1,

and

(13) bL
1 + · · ·+ bL

n = a− 1,

and

(14) bC
1 + · · ·+ bC

m = 2a.
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or the following case to whom we refer to as the case2

(15) (bL
1 )2 + . . . + (bL

n)2 + (bC
1 )2 + · · ·+ (bC

m)2 = a2 + 1,

and

(16) bL
1 + · · ·+ bL

n = a,

and

(17) bC
1 + · · ·+ bC

m = 2a− 1.

holds.

It follows that if eitherm or n vanishes, thena also vanishes. So we may consider the
integersm andn to be not equal to zero. Assume that we are in the case 1, and consider
the new scalars(αL

i )i∈{1,...,n} and(βC
j )j∈{1,...,m} defined by:

(18) αL
i = bL

i − a− 1
n

, for every i=1, . . . , n,

and

(19) βC
j = bC

j − 2a

m
, for every j=1, . . . , m.

Then the equations (12), (13) and (14) give

(20) (αL
1 )2 + . . . + (αL

n)2 + (βC
1 )2 + · · ·+ (βC

m)2 = 1 + a2 − (a− 1)2

n
− 4a2

m
,

and

(21) αL
1 + · · ·+ αL

n = 0,

and

(22) βC
1 + · · ·+ βC

m = 0.

It follows then from the equation (20) thata is bounded. With the same strategy, we
prove the boundness ofa in the case 2.

Remark 16. Our method of proving the theorem 1 suggests not only to allow that some
points to be infinitely near but also to consider other classes of smooth projective rational
surfaces other thanS(n,m).
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